转向架构架补焊残余应力数值模拟

张志毅¹ 韩永彬¹ 王心红¹ 李丹丹²

(1.南车青岛四方机车车辆股份有限公司,山东 青岛 266111 2.大连交通大学 材料科学与 工程学院,辽宁 大连 116028)

摘要 转向架作为车辆走行部的主要构件,常采用局部补焊的手段进行修复,这势必影响接头残余应 力。利用 ABAQUS 有限元分析软件,分别对焊态、不同补焊参数和补焊次数后的残余应力进行了数值模 拟。模拟计算结果表明:补焊后焊缝的纵向应力大大增加,横向应力减小,但随着补焊次数的增加,纵向 应力变化不大,横向应力有所增加,随深度增加,纵向应力涨幅不大,横向应力有所增加,随补焊宽度 增加,焊缝区的横向应力有所增加,纵向应力略有增加但幅度不大。开展对转向架焊接构架对接焊缝补 焊残余应力分析,对于指导焊接转向架生产、降低焊接接头残余应力具有重要的意义。 关键词:SMA490BW,对接接头;多次补焊,残余应力,数值模拟 中图分类号:TG457.2*1 文献标识码:A 文章编号:1001-2303(2012)04-0082-05

Residual stress numerical simulation of repair welding in bogie frame

ZHANG Zhi-yi¹ ,HAN Yong-bin¹ ,WANG Xin-hong¹ ,LI Dan-dan²

(1.CSR Qingdao Sifang Co. Ltd. Qingdao 266111 China 2.School of Materials Science and Engineering Dalian Jiaotong University Dalian 116028 China)

Abstract: The bogic is the main component of vehicle running and it is often repaired by local repair welding which would cause residual stress in butt weld during welding. The residual stress of repair welding in bogic was simulated separately with ABAQUS the finite element analysis software. The results showed that the longitudinal stress of the weld increased significantly after repair welding , but the transverse stress decreased ; With the increasing number of the repair welding the longitudinal stress didn't change greatly , while the transverse stress increased ; With the increasing depth of repair welding the increase of longitudinal stress wasn't too much , but the transverse stress increased. With the increase of repair welding width the transverse stress increased and the longitudinal stress of repair welding to guide the bogic production and to reduce the welding residual stress of the joint.

Key words: SMA490BW , butt joint , numbers of repair welding residual stress , numerical simulation

0 前言

转向架作为车辆走行部的主要构件,在工作过 程中承受着交变载荷的作用。为了保证高速构架有 足够的强度、刚度和抗疲劳能力,减轻自重,实现低 动力作用,目前高速客车转向架的构架均采用焊接

• 82 • Electric Welding Machine

形式,焊缝密集,易有夹杂、气孔等缺陷,且在使用 过程中容易有裂纹产生,如果只是简单的整体报废 将会造成很大的浪费,因此常采用局部补焊的手段 进行焊接修复¹¹¹,这样可以有效提高经济效益。但在 同一部位进行补焊,材料将多次受热,在补焊处会 形成复杂的焊接残余应力分布状态。而残余应力是 影响焊接接头强度的重要因素之一^[2-3],因此,分析 补焊后的残余应力对于制定正确的补焊工艺、提高 补焊接头的可靠性具有重要的意义。

目前 "Dong 等人⁴⁴对管道焊接接头的修复长度

收稿日期:2011-11-11

基金项目:"十一五"国家科技支撑计划基金资助项目(2009BAG 12A02-B02-2)

作者简介:张志毅(1980—) 男,浙江金华人, 工程师,学士,主 要从事转向架焊接工艺研发工作。

对焊接残余应力分布的影响进行了数值模拟。汤洁 等人对 16MnR 钢焊接接头补焊的残余应力进行数 值模拟,但对于转向架的常用钢 SMA490BW 至今 尚没有相关研究。在此应用 ABAQUS 有限元分析软 件对 SMA490BW 钢进行补焊后的残余应力的数值 模拟,得到不同补焊后残余应力的分布情况,为优 化补焊工艺提供一定的理论基础。

1 有限元计算模型

1.1 计算模型和网格划分

由于平板对接接头关于焊缝中心对称,因此取 其一半进行有限元分析。几何模型补焊区结构和尺 寸如图 1 所示,焊接试板尺寸 130 mm×75 mm×12 mm, 坡口形式为 60°的 V 型坡口。补焊区长度 30 mm, 补焊深度、补焊宽度和补焊次数如表 1 所示。有限 元计算模型如图 2 所示,其中图 2a 模型用于计算 补焊宽度变化时接头的补焊残余应力,图 2b 模型 分别用于计算补焊深度和补焊次数变化时接头的 补焊残余应力。有限元网格划分如图 3 所示,在焊 缝和补焊区划分较密,远离焊缝区网格较稀。补焊 深度和补焊次数的计算模型共 35 112 个节点, 30 654 个单元,补焊宽度计算模型共 43 230 个节点, 38 220 个单元,温度场采用 DC3D8 单元,应力场计 算采用 C3D8R 单元,温度场、应力场的计算采用 相同的节点和单元。

图 1 补焊区域结构与尺寸

表1 补焊试验因素及水平								
试验水	〈平	因素A		因素 A 因素 B				
	补焆	■深度 b/m	n 补	焊宽度 a/m	nm 补焊次数	攵		
1		4		8	1			
2		6		14	2			
3		8		20	3			

1.2 有限元分析

采用 ABAQUS 软件进行有限元分析。先进行平板对接的焊接残余应力分析,再在此基础上分析补焊残余应力。有限元计算过程中,首先进行温度场分析,然后将各节点温度作为体载施加在结构应力

中。在力分析过程中读取各节点的温度,进行插值 计算,得到残余应力分布。

1.3 材料物理和力学性能参数

假设焊材与母材材质相同,其物理性能和力学 性能参数如图 4 所示。图 4 中 , μ 为泊松比 ; C_P 为比 热容(单位 :10² J/(kg·°C)] \hbar 为热导率[单位 :W/(m·°C)] ; α 为线膨胀系数(10⁻⁵/°C) ; R_e 为屈服强度(100 MPa) ;

Electric Welding Abachine • 83 •

E 为弹性模量(100 GPa) *p* 为密度(单位 :10³ kg/m³); 相变潜热 277 kJ/kg 固相线温度 1 480 ℃ 液相线温 度 1 520 ℃。

1.4 焊接工艺和焊接热源

采用 MAG 焊。正常焊接采用人工底焊,填充及 盖面采用自动焊接,补焊采用人工焊接。人工底焊 和补焊使用松下 KR-500 型焊机,自动焊接选用 IGM 焊接机械手。正常焊接和补焊的工艺参数如表 2 所示。焊接热源采用内生热源模拟电弧加热过程, 热流密度为

$q = \eta IU/(Sv)$

式中 η 为电弧热效率 I 为焊接电流 I 为电弧 电压 S 为焊缝截面积 p 为焊接速度。

焊接状态	焊道	电流 I/A	电压 U/V	焊速 v/cm・min⁻¹
正常焊接	1(手工焊)	130~140	18.0~19.0	20
正常焊接	2(自动焊)	246~256	24.8~24.9	24
正常焊接	3(自动焊)	258~265	25.2~25.3	20
补焊	各焊道	260	27.2	20

表 2 焊接和补焊工艺参数

1.5 边界条件处理

焊接温度场中,焊件与外界同时存在着对流和 辐射换热,在所有外边面均施加换热边界条件,环 境温度 20 ℃,焊接结束后冷却到常温。

应力分析中,焊缝中心为轴对称边界条件。对 焊件下表面约束 y 方向,限制母材长度方向上边缘 最外层的两层节点的全位移。

- 2 计算结果和讨论
- 补焊深度对残余应力的影响
 焊态及补焊深度分别为4 mm、6 mm、8 mm 的

• 84 • Electric Welding Machine

纵向残余应力σ_x的变化如图 5 所示。由图 5a 可 知, 在焊缝及近缝区呈现出数值较高的残余拉应力 状态, 而远离焊缝及近缝区的区域, 残余应力降低 且在母材处应力状态由拉应力转变为压应力。焊态 下焊缝中心的纵向残余应力σ_x=280 MPa, 热影响区 处的σ_x=140 MPa。与焊态下相比,补焊后焊缝及近 缝区的纵向残余应力明显增大,如挖补深度 4 mm 补焊后,焊缝中心最大纵向残余应力为 395 MPa。比较 不同挖补深度对残余应力的影响,随着挖补深度的 增加,焊缝中心部位的纵向残余应力有所增大, 但 增加幅度较小, 而远离焊缝中心的其他部位残余应 力没有明显的变化。

由图 5b 可知, 在焊缝及其近缝区, 横向残余拉 应力较大, 远离焊缝区域的残余横向拉应力降低, 在 母材处从拉应力转变为压应力。与纵向残余应力及 其分布特征相比, 横向残余应力的分布较为相似, 但 应力数值较小。焊态下, 焊缝中心处的横向残余拉

600₀

应力 σ_{χ} 仅为 73 MPa 经过挖补深度 4 mm 的补焊 后,焊缝中心部位的残余拉应力为100 MPa,挖补 深度 6mm 时为 110 MPa 挖补深度 8mm 时为 120 MPa。 可见随着补焊深度的增加 焊缝及近缝区的横向残 余拉应力具有较大程度的提高。

综上所述 在焊态下焊缝及其近缝区均呈拉应 力状态,在焊缝中心部位残余拉应力最大,而远离 焊缝及其近缝区的区域 残余拉应力逐渐减小 并最 终由残余拉应力状态转变为残余压应力状态。与焊 态下相比 不同挖补深度时的补焊残余应力具有基 本相同的分布规律,且在焊缝及其近缝区的残余拉 应力大幅度增大。随着挖补深度的增加 焊缝及其近 缝区的纵向残余应力有所增大 但不十分明显 而横 向残余应力的增大较为明显。

补焊使焊缝的残余拉应力大幅度增加,这是因 为挖补熔池金属在凝固过程中的自由收缩受到周 围固态金属的限制 且与焊态下相比拘束程度更大, 因此产生较大的残余应力。随着补焊深度的增加 熔 池体积增加从而使残余应力增加。

2.2 补焊宽度对残余应力的影响

挖补宽度分别为 8 mm、14 mm、20 mm 时的残 余应力分布云图如图 6 所示。显然 在焊缝及其近缝 区为残余拉应力状态 远离焊缝及其近缝区的残余 拉应力逐渐减小 最终均转变为压应力状态。

图 6a 给出了正常焊接和补焊后纵向残余应力 σ_x 的分布规律。由图 6a 可知 在焊缝及近缝区均 为拉应力状态 在焊缝中心线处残余应力较大。随着 离焊缝中心线的增加 ,残余拉应力值迅速降低 ;在 远离焊缝的母材区,残余拉应力转变为压应力。焊 态下,焊缝中心处的纵向残余拉应力 σ_x =280 MPa, 在挖补宽度 8 mm 的条件下进行补焊后,焊缝中心 处的残余拉应力值增加到约 400 MPa ;而当挖补宽 度分别为 14 mm 和 20 mm 时 焊缝最大的纵向应力 虽有增加但增幅不大。

图 6b 给出了正常焊接和补焊后横向残余应力 σ ,的分布特征。与焊态下相比,补焊后的焊缝及近 缝区 横向残余拉应力值明显增大 且由于挖补宽 度增加 高值残余拉应力区的作用范围也相应增加。 焊态下 焊缝中心处的横向残余应力 σ_{x} =70 MPa ,当 挖补宽度 8 mm 时 挖补区域位于原始焊缝内部 补 焊后焊缝区的 σ_{γ} 增加 最大应力达 100 MPa 挖补 宽度 14 mm 时 恰好为沿着原始熔合线挖补 焊缝及

近缝区的 σ_x 呈较大幅度提高 最大值为 120 MPa 挖 补宽度 20 mm 时,挖补区域已超过原始焊缝的宽 度,此时焊缝及近缝区的 σ_{γ} 继续大幅度提高,最大 值增加到 180 MPa。可见 随着挖补宽度的增加 补焊 后焊缝区及近缝区的横向残余拉应力有较大幅度 的提高。

综上所述,与焊态下相比,不同挖补宽度时的 补焊残余应力具有基本相同的分布规律 ,且在焊缝 及其近缝区的残余拉应力值大幅度增加。随着挖补 宽度的增加 补焊后焊缝区及近缝区的横向残余拉 应力较大幅度地提高 焊缝最大的纵向应力虽有增 加但增幅不大。挖补宽度增加时,焊缝中补焊残余 应力增加的原因与挖补深度变化时相同。

2.3 补焊次数对残余应力的影响

补焊一次、两次、三次后的残余应力云图如图 7 所示。可以看出 在焊缝及近缝处呈现出明显的残

> Electric Welding Machine · 85 ·

第4期

余拉应力状态 而远离该区残余拉应力逐渐减小。

图 7a 为焊态和不同挖补次数补焊后纵向残余 应力 σ_x 的分布规律。由图 7a 可知,在焊态及补焊 状态下,焊缝及近缝区均呈拉应力状态。且与焊态相 比,补焊后残余拉应力作用范围基本不变,但拉应 力值明显提高,最高应力都集中在焊缝中心部位,即 焊态下焊缝中心部位的纵向残余应力σ_x=280 MPa, 经过一次补焊后增加到 395 MPa,但随着挖补次数 的增加,纵向残余应力值变化不大。可见,多次补焊 后,最大纵向应力位于焊缝中心部位。

图 7b 为焊态和不同挖补次数后横向残余应力 σ,的分布规律。容易看出,在焊态及补焊状态下,在 焊缝及近缝区的横向残余应力也均呈拉应力状态, 但与纵向残余拉应力分布特征相比,横向残余拉应 力峰值不在焊缝中心部位,而集中在焊缝熔合线 处,并且随着挖补次数的增加,横向残余拉应力有 明显增大。

随着挖补次数的增加 焊缝残余应力值变化不

• 86 • Electric Welding Machine

大,这是由于焊缝每一次挖补之后都是又重新填充 金属,而试板的拘束条件和熔池体积在多次补焊过 程中并未发生改变^[4-5];因此按照一般焊接理论,焊 缝残余应力增加不大。

3 结论

(1)在正常焊接状态下,在焊缝中心部位的残余 拉应力最大,而远离焊缝及其近缝区的其他部位,残 余拉应力逐渐较小,并最终由拉应力状态转变为压 应力状态。

(2)与焊态下相比,在不同挖补深度时,补焊残 余应力具有基本相同的分布规律,在焊缝及其近缝 区的残余拉应力值增大。随着挖补深度的增加,焊 缝及其近缝区的纵向残余应力虽有所增大但不明 显,而横向残余应力的增大较为明显。

(3)当挖补宽度不同时,补焊残余应力分布特征 与挖补深度的影响基本相似。焊缝及近缝区仍呈拉 应力状态,且与焊态下相比,残余拉应力值均有明 显的增大。且由于挖补宽度增加,高值残余拉应力区 的作用范围也相应增加。随着挖补宽度的增加,焊缝 及近缝区的纵向拉应力虽有增加而增幅不大,但横 向残余拉应力有较大幅度地提高。

(4)当挖补次数变化时,焊缝及近缝区也呈拉应 力状态,纵向残余应力值变化不大,横向残余拉应 力较为明显的增大。与焊态下相比,补焊后残余拉应 力作用范围基本不变,但拉应力数值明显提高,最 高的纵向拉应力作用在焊缝中心部位,而横向残余 拉应力峰值集中在焊缝熔合线处。

参考文献:

- [1] 陈伯蠡.焊接工程缺陷分析与对策[M].北京 机械工业出 版社,1997.
- [2] Dong P ,Brust F W.Welding residual stress and effects on fracture in pressure vessel and piping components a millennium review and beyond[J].Journal of Pressure Vessel Technology , 2000 ,12(8) 329–338.
- [3] Lun din C D ,Khan K K ,Yang D *et al*.Failure analysis of a service exposed hot reheat steam line in a utility s team plant[J].WRC Bullet in ,1990(354) :1- 38.
- [4] Dong P Zhang J ,Bouchard P J.Effects of repair weld length on residual stress distribution[J].Journal of Pressure Vessel Technology 2002 ,124(1) :74–80.
- [5] 侯 涛 朱 平 史春元.焊趾 TIG 重熔层激冷处理后残 余应力场有限元分析[J].机车车辆工艺 2008(1):14-16.