文章编号:1002-025X(2018)12-0041-06

A6005A - T6 铝合金焊接接头 P - S - N 疲劳寿命研究

王远霏¹. 孙海荣¹. 朱忠尹². 于金朋^{1,3}

(1.中车唐山机车车辆有限公司 产品技术研究中心,河北 唐山 063035; 2.西南交通大学 材料先进技术教育部重点实验室,四川 成都 610031; 3.西南交通大学 牵引动力国家重点实验室,四川 成都 610031)

摘要:根据铝合金材料疲劳试验统计分析方法,求出了 A6005A-T6 铝合金焊接接头平滑样和带余高试样的 *P-S-N* 疲劳曲线,基于该 曲线对不同应力集下的试验数据进行了可靠性分析,探讨了 *S-N* 曲线与 *P-S-N* 曲线之间的优劣性。研究结果表明,如果用高存活率、 高置信度的 *P-S-N* 曲线进行设计和寿命估算,其结果将更有利于安全。

关键词: A6005A-T6 铝合金; 焊接接头; S-N 曲线; P-S-N 曲线

中图分类号: TG405 文献标志码: B

DOI:10.13846/j.cnki.cn12-1070/tg.2018.12.011

0 引言

据不完全统计、机械破坏形式中、有 50%~90% 为疲劳破坏[1-3]、为了对构件进行可靠性设计和寿命 估算。也为了了解其疲劳性能。往往需要对材料进 行疲劳试验。由于疲劳寿命的分散性,用常规方法 做出的 S-N 曲线, 是存活率 P=50% 的中值S-N 曲 线、其置信度也为 50%、它只能代表中值疲劳寿命 与应力水平之间的关系。如果仅仅以这种曲线作为 构件设计和疲劳寿命估算的依据,则往往偏于危险, 因为中值寿命意味着有一半的产品在达到预期寿命 前就已经失效。A6005A-T6 铝合金常用于高速列车 车体的焊接、铝合金焊接时会产生气孔等缺陷、引 入残余应力、从而造成疲劳寿命的降低。本文求出 了 A6005A-T6 铝合金焊接接头平滑样和带余高试样 的 P-S-N 疲劳曲线,基于该曲线对不同应力集下的 试验数据进行了可靠性分析,探讨了 S-N 曲线与 P-S-N曲线之间的优劣性。研究结果表明,如果用高 存活率、高置信度的 P-S-N 曲线进行设计和寿命估 算、其结果将更有利于安全。

疲劳试验》进行。

1.1 试样尺寸

试样加工尺寸如图 1 所示,采用线切割加工, 在焊接接头平滑试样疲劳试验时,要去除焊缝余高, 焊缝区域与母材平齐,余高去除部位与母材的交界 处要进行细致的研磨处理,避免局部应力集中,同 时需避免切削过度致使厚度减小。

1.2 试验条件

疲劳性能试验所用设备为 QBG 系列高频疲劳试验机,如图 2 所示。表 1 为常温下疲劳性能试验条件。

图 2 QBG 系列高频疲劳试验机

1 基本数据

疲劳试验参照国标 GB/T 3075-2008《金属材料

收稿日期: 2018-05-24

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

表1 常温下疲劳性能试验条件

试验环境	在大气中进行试验
试验温度/℃	20~25
试验装置	电磁共振疲劳试验机
载荷种类	为轴向力拉伸(正弦波)试验,在 应力范围 (Δσ)中进行评价
应力比 R	$R~(\sigma_{\min}/\sigma_{\max})$ =0.5
应力等级	5 个以上应力级
重复次数/次	5×10 ⁴ ~10 ⁷
试验频率/Hz	10~140
断裂重复次数	彻底断裂时的重复次数

2 P-S-N曲线计算

绘制 *P–S–N* 曲线时,一般采用成组法与升降法 相结合的方式进行,是在用成组法和升降法确定中 值疲劳寿命和安全疲劳寿命的基础上通过曲线拟合 而取得的^[5]。

2.1 成组法

用成组法进行试验时,在某一应力水平下试验1 组试件,数据分散性小时,试件可以少取一些;数 据分散性较大时,则需要多一些试件。得出数据后, 按照下述步骤进行处理。给定试验力 *S* 下的疲劳寿 命被认为是自由变量,通常按照正态分布来表述:

$$P(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \int_{-\infty}^{x} e^{\left[\frac{1}{2}\left(\frac{x-\mu_x}{\sigma_x}\right)^2\right]} dx, \qquad (1)$$

式中: $x = \log N$; μ_x 和 σ_x 分别是 x 的平均值和标准偏差。

式 (1) 给出了 x 失效的累积概率,即总样本在 小于或等于 x 下的失效比例。

(1) S-N 数据的统计分析

利用线性的数学模型分析 S-N 的关系:

$$x=b-ay, (2)$$

式中: $x=\lg N$; a和 b是常数; $y=S_{\circ}$

对于总样本平均 S-N 曲线最适合的估计如下式:

$$x = \hat{b} - \hat{a}\gamma, \qquad (3)$$

$$\hat{a} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sum_{i=1}^{n} (y_i - \overline{y})^2},$$
(4)

$$\hat{b} = \overline{x} + \hat{a}\overline{y}, \qquad (5)$$

式中: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}; \ \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}; \ n$ 是数据点数。字母

上标符号"~"代表它们是估计值。

总样本的平均 *S-N* 曲线的对数疲劳寿命的标准 偏差根据下式估算:

$$\hat{\sigma}_{x} = \sqrt{\frac{\sum_{i=1}^{n} \left[x_{i} - (\hat{b} - \hat{a}y_{i})\right]^{2}}{n-2}}, \quad (6)$$

式中: n-2 为自由度。

总样本的疲劳强度标准偏差根据下式估算:

$$\hat{\sigma}_{y} = \frac{\hat{\sigma}_{x}}{\hat{a}} \circ \tag{7}$$

(2) S-N曲线下极限的估算

总样本在 $(1-\alpha)$ 置信度,自由度为 ν ,失效概 率 P下的 S-N曲线的下极限根据下式估计:

$$\hat{f}_{1-\alpha, \nu} = \hat{b} - \hat{a}y - \hat{\sigma} + \sqrt{1 + \frac{1}{2} + \frac{(y - \overline{y})^2}{(y - \overline{y})^2}}$$

$$k_{(p, 1-\alpha, \nu)} \hat{\sigma}_{x} \sqrt{1 + \frac{1}{n} + \frac{(\gamma - \gamma)}{\sum_{i=1}^{n} (\gamma_{i} - \gamma)^{2}}}, \qquad (8)$$

式中: $k_{(p,1-\alpha,p)}$ 是正态分布的单边误差限,可在 GB/T 24176—2009 《金属材料疲劳试验数据统计方案与分 析方法》 (附录)中查到。

式 (8) 中平方根值是根据总样本对标准偏差估 计值的一个修正,当试样数和范围都足够大时,修 正值接近 1,可以忽略。

2.2 升降法

 $\hat{x}_{(n)}$

升降法首先预估被测材料疲劳极限,在略高于 预估疲劳极限的应力水平下进行疲劳试验,凡前一 个试件未达到指定的疲劳寿命而发生破坏,则随后 的一次试验就在低一级的最大应力下进行;凡前一 个试件越出(未破坏),则随后的一次试验就在高一 级的最大应力下进行,直至完成全部的试验为止。 对于试验结果的处理,根据升降图,将相邻应力级 别的各数据点配成对子,配对时,从第1次出现相 反结果以前的数据均舍弃,若在升降图的波动范围 之内,则可作为有效数据加以利用。按照上述方法 安排试验,当升降图"闭合"时,各数据点均可以 配对。其闭合条件是:根据有效数据的终点为越出 或破坏,可以设想在某一应力水平还存在一个数据 点,若该点与有效数据的起点位于同一应力水平上 则表示闭合。当数据满足以上规定时,升降法数据 才能合格。

为了用比较少的试样数量(对于解释性试验需 至少6个试样,对于可靠性试验要求至少15个试 样)较为准确地测定疲劳极限,可以采用改进的升 降法。试验一般在3~5级应力水平下进行,应力台 阶选取接近标准偏差或接近估算平均疲劳强度的 5%。

如果 *n* 个试样在应力水平为 *S*₁, *S*₂, …, *S_n* 按顺 序试验, 那么平均疲劳强度由试验力 *S*₂ 到 *S*_{n+1} 的平 均值来测定, 跳过第 1 点, 不考虑哪个试样失效, 哪个试样不失效, 计算公式如下:

$$\overline{\mu}_{y} = \frac{\sum_{i=2}^{n+1} S_{i}}{n}$$
(9)

 S_{n+1} 试验不进行,但应力水平可以从n个试验结果中测定。那么,失效概率为P,置信度为 $1-\alpha$ 时,根据下式估计总样本疲劳强度的下极限:

$$\hat{y}_{(p, 1-\alpha)} = \hat{u}_{y} - k_{(p, 1-\alpha, \nu)} \hat{\sigma}_{y\circ}$$
(10)

2.3 P-S-N全曲线

P-S-N全曲线图由有限疲劳寿命范围的一条斜 线和无限寿命范围的水平直线组成。有限疲劳寿命 范围的平均 S-N 曲线(斜线部分)按成组法进行测 定,平均 S-N 曲线的斜线部分方程按式(2)~ (5)进行计算,疲劳强度的标准偏差按式(6)、式 (7)进行计算。P-S-N 曲线在指定存活率、一定置 信度条件下的下极限根据公式(8)得出斜线方程。 无限疲劳寿命范围的疲劳强度的测定按照升降法进 行。S-N 曲线的平均疲劳强度按式(9)计算,P-S-N 曲线的疲劳强度按式(10)计算。由于铝合金 不存在真正的疲劳极限,试验中所测得的疲劳极限 是当循环次数达到10⁷而未失效时的条件疲劳极限, 因此,铝合金焊接接头的P-S-N 曲线不存在水平 部分。

- 3 结果与分析
- 3.1 平滑试样疲劳性能

对接头平滑试样 (图 3)进行应力比为 *R*=0.5 的 疲劳性能测试,并按照 GB/T 24716—2009《金属材 料疲劳试验数据统计方案与分析方法》采用升降法 测定试件的疲劳极限,然后绘制出 *P*-*S*-*N* 曲线。有 限疲劳寿命的成组法试验数据见表 2,无限疲劳寿命 范围升降法数据见表 3,采用升降法得出的升降图如 图 4 所示。

图 3 标准平滑接头疲劳试样 表 2 成组法疲劳试验数据

试样编号	应力水平/MPa	循环次数/次	对数疲劳寿命	断裂部位
P-1	150	10 000 000	7	_
P-2	150	6 321 200	6.800 799 531	焊缝
P-3	150	10 000 000	7	_
P-4	160	2 227 800	6.347 876 2	焊缝
P-5	160	1 529 700	6.184 606 267	焊缝
P-6	160	1 182 100	6.072 654 217	焊缝
P-7	170	1 436 400	6.157 275 396	焊缝
P-8	170	703 000	5.846 955 325	热影响区
P-9	170	1 176 200	6.070 481 175	焊缝
P-10	180	514700	5.711 554 168	焊缝
P-11	180	402 200	5.604 442 066	焊缝
P-12	180	383 000	5.583 198 774	焊缝
P-13	190	248 500	5.395 326 393	焊缝
P-14	190	336 800	5.527 3720 83	焊缝
P-15	190	391 300	5.592 509 848	焊缝
P-16	200	159 600	5.203 032 887	焊缝
P-17	200	298 700	5.475 235 223	焊缝
P-18	200	1 037 500	6.015 988 105	焊缝
P-19	210	427 900	5.631 342 286	焊缝
P-20	210	150 800	5.178 401 342	焊缝
P-21	210	341 000	5.532 754 379	焊缝

表 3 平滑试样升降法试验数据

试样编号	应力水亚/MD。	循环次数/次	对数症带寿命	断刻如位
		1/目 / 1/八 女人/ 1/八	小弦戏戏方小中	비정매보
P-22	140	10 000 000	7	_
P-23	150	10 000 000	7	_

		头北 5		
试样编号	应力水平/MPa	循环次数/次	对数疲劳寿命	断裂部位
P-24	160	850 000	5.929 419	热影响区
P -25	150	10 000 000	7	—
P-26	160	355 100	5.550 351	焊缝
P-27	150	6 052 500	6.781 935	焊缝
P-28	140	10 000 000	7	—
P -29	150	10 000 000	7	—
P-30	160	653 400	5.815 179	焊缝
P-31	150	10 000 000	7	—
P-32	160	876 400	5.942 702	焊缝
P-33	150	7 542 800	6.877 533	焊缝
P-34	140	10 000 000	7	—
P-35	150	10 000 000	7	—
P-36	160	556 400	5.745 387	焊缝

采用 A6005A-T6 铝合金平滑接头平均 S-N 曲线 (成组法) 试验数据 (表 1),以及线性模型和单对数 坐标 x=lg N, y=S 进行统计分析。根据公式 (1) ~ (10),将表 2 的数据带入可得:

> $\overline{y} = 180, \ \overline{x} = 5.902,$ $\sum (x - \overline{x})^2 = 5.760,$ $\sum (y - \overline{y})^2 = 8\ 400,$

 $\sum (x-\overline{x})(y-\overline{y}) = -187.562_{\circ}$

根据公式 (4)、式 (5) 计算常数可得:

 $\hat{a}=0.022$ 3, $\hat{b}=9.920$ 7 $_{\circ}$

对数疲劳寿命标准偏差为: $\hat{\sigma}_x=0.287.6$;

对数疲劳强度标准偏差为: $\hat{\sigma}_{,=12.880}$ 2。平均 S-N 曲线的方程为:

$$\hat{x}_{(50,50)} = 9.920\ 7 - 0.022\ 3y_{\circ}$$
 (11)

置信度为 95%,失效概率为 5%时,且自由度为 19,查阅标准的附录得到 *k*_(0.05,095,19)=2.396,则下极限 曲线方程为:

 $\hat{x}_{(5,95)}$ =9.920 7-0.022 3y-2.396×0.287 6

$$=9.231\ 6-0.022\ 3y_{\circ} \tag{12}$$

疲劳强度试验采用经过改进的升降法,升降台 阶为 10 MPa,试验数据见表 2,平滑试样疲劳升降 图如图 4 所示。

根据公式 (9),得到平均疲劳强度为:

 $\hat{\mu_{y}} = \frac{\sum_{i=2}^{16} S_i}{16} = (160 \times 5 + 150 \times 8 + 140 \times 2)/15 = 152 \text{ MPa}_{\circ} \quad (13)$

95%置信度,5%失效概率时,疲劳强度的下极 限为:

$$\hat{y}_{(p,1-\alpha)} = \hat{y}_{(5,95)} = 152 - 2.396 \times 12.880\ 2$$

=121.139 MPa_o (14)

结合式 (11) ~ (14) 绘制平滑接头试样疲劳性 能的 *P–S–N* 全曲线图如图 5 所示。由图 5 可见,置 信度 (1-α) =95%,失效概率 *P*=5%条件下的疲劳 极限为 121 MPa,比平均疲劳极限 152 MPa 低了 31 MPa,以此极限作为应力比 *R*=0.5 条件下的产品设 计的依据,则更有利于构件运行安全,可靠度更高。

3.2 带余高试样的疲劳性能

对带余高的试样(图 6)进行应力比为 *R*=0.5 的疲劳性能测试,按照标准 GB/T 24716—2009《金 属材料疲劳试验数据统计方案与分析方法》用升降 法测定试件的疲劳极限,绘制 *P*-*S*-*N* 曲线。有限疲 劳寿命的成组法试验数据见表 4,无限疲劳寿命范 围升降法数据见表 5, 升降法得出的升降图如图7 所示。

图6 标准平滑接头疲劳试样

表 4 余高试样成组法疲劳试验数据

试样编号	应力水平/MPa	循环次数/次	对数疲劳寿命	断裂部位
Y-1	110	10 000 000	7	—
Y-2	110	10 000 000	7	—
Y-3	110	10 000 000	7	—
Y-4	120	10 000 000	7	—
Y-5	120	3 808 700	6.580 776 766	焊趾
Y-6	120	5 465 900	6.737 661 682	焊趾
Y-7	130	4 755 000	6.677 150 521	焊趾
Y-8	130	6 876 700	6.837 380 078	焊趾
Y-9	130	4 371 300	6.640 610 613	焊趾
Y-10	140	531 300	5.725 339 816	焊缝
Y-11	140	367 500	5.565 257 343	焊缝
Y-12	140	1 853 700	6.268 039 45	焊趾
Y-13	150	763 000	5.882 524 538	焊趾
Y-14	150	686 600	5.836 703 799	焊趾
Y-15	150	691 500	5.839 792 184	焊缝
Y-16	160	588 200	5.769 525 02	焊缝
Y-17	160	440 600	5.644 044 493	焊缝
Y-18	160	860 200	5.934 599 438	焊趾

表 5 余高试样升降法疲劳试验数据

试样编号	应力水平/MPa	循环次数/次	对数疲劳寿命	断裂部位
Y-19	110	10 000 000	7	_
Y-20	120	10 000 000	7	—
Y-21	130	893 600	5.951 143	焊趾
Y-22	120	5 691 500	6.755 227	焊趾
Y-23	110	10 000 000	7	_
Y-24	120	10 000 000	7	—
Y-25	130	566 400	5.753 123	焊趾
Y-26	120	3 678 070	6.565 62	焊趾
Y-27	110	10 000 000	7	_
Y-28	120	10 000 000	7	—
Y-29	130	765 900	5.884 172	焊趾
Y-30	120	10 000 000	7	_
Y-31	110	8 524 300	6.930 659	焊趾
Y-32	100	10 000 000	7	_
Y-33	110	10 000 000	7	_

A6N01S-T5 铝合金余高接头平均 *S-N* 曲线(成 组法)试验数据见表 4,利用线性模型和单对数坐标 *x*=log *N*, *y*=*S* 进行统计分析。根据公式(1)~(10), 将表 4 的数据带入可得:

$$\overline{y} = 135, \ \overline{x} = 6.330,$$

 $\sum (x - \overline{x})^2 = 5.078,$
 $\sum (y - \overline{y})^2 = 5.250,$
 $\sum (x - \overline{x})(y - \overline{y}) = -145.670_{\circ}$

根据公式(4)及式(5)计算常数可得:

 \hat{a} =0.027 7, \hat{b} =10.075 8.

对数疲劳寿命标准偏差为_:

 $\hat{\sigma}_{x}=0.254\,5_{\odot}$

对数疲劳强度标准偏差为:

 $\hat{\sigma}_{x}=9.172 \ 8_{\odot}$

平均 S-N 曲线的方程为:

$$\hat{x}_{(50,50)} = 10.075 \ 8 - 0.027 \ 7y_{\circ}$$
 (15)

置信度为 95%, 失效概率为 5%时, 且自由度为 16, 从标准附录得到 $k_{(0.05,0.95,16)}=2.486$, 则下极限曲线 方程为:

$$\hat{x}_{(5,95)} = 10.075 8 - 0.027 7y - 2.486 \times 0.254 5$$

$$=9.443 \ 1-0.027 \ 7y_{\circ} \tag{16}$$

疲劳强度试验采用改进的升降法,升降台阶为

10 MPa,数据见表 5,疲劳升降图见图 7。

根据公式 (9),得到平均疲劳强度为:

$$\hat{\mu}_{y} = \frac{\sum_{i=2}^{16} S_{i}}{16} = (130 \times 3 + 120 \times 7 + 110 \times 4 + 100 \times 1)/15$$

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

$$=118 \text{ MPa}_{\circ}$$
 (17)

95%置信度,5%失效概率时,疲劳强度的下极限为:

 $\hat{y}_{(p,1-\alpha)} = \hat{y}_{(5,95)} = 118 - 2.486 \times 9.172 8$

$$=95.196 4 \text{ MPa}_{\circ}$$
 (18)

结合式 (15) ~ (18) 绘制带余高接头试样疲劳 性能的 P-S-N 全曲线图如图 8 所示。由图 8 可见, 置信度(1- α)=95%,失效概率 P=5%条件下的疲劳极 限为 95 MPa,比平均疲劳极限 118 MPa 低了 23 MPa,以此极限作为应力比 R=0.5 条件下的产品设计 依据,则更有利于构件运行安全,可靠度更高。

4 结论

(1) 应力比 *R*=0.5 时, A6005A-T6 铝合金平滑标准接头在置信度(1-α)=95%, 失效概率 *P*=5%条件

下的疲劳极限为 121 MPa, 比平均疲劳极限 152 MPa (升降法) 低了 31 MPa, 以此极限作为应力比 *R*=0.5 条件下的产品设计的依据,则更有利于构件运行安 全,可靠度更高。

(2) 应力比 *R*=0.5 时, A6005A-T6 铝合金带余
高标准接头在置信度(1-α)=95%, 失效概率 *P*=5%条
件下的疲劳极限为 95 MPa, 比平均疲劳极限 118
MPa (升降法) 低了 23 MPa, 以此极限作为应力比 *R*=0.5 条件下的产品设计的依据,则更有利于构件运
行安全,可靠度更高。

参考文献:

- [1] 姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003: 10-25.
- [2] 李舜酩. 机械疲劳与可靠性设计[M]. 北京: 国防工业出版 社, 2006: 1-10.
- [3] 穆志韬,曾本银.直升机结构疲劳[M].北京:国防工业出版社, 2009:2-8.
- [4] 苟国庆,于金朋,张立民,等.铝合金车体结构焊接残余应力研 究[J].电焊机,2011,41(11):35-38.
- [5] HB/Z 112 —1986 材料疲劳试验统计分析方法[S].

作者简介:王远霏 (1979—),男,河北唐山人,硕士,高级工程师, 主要从事轨道交通车辆前瞻、共性等新技术研究,以及车辆关键系统 健康管理及使用寿命评估应用研究.

	国际标准刊号: ISSI	N 1001-2354	国肉统一刊号	: CN 12-1120 / TH	
《机械设计》系 例、中国科技论文线 学位与研究生教育排 期刊(遴选)数据库" 国学术期刊(光盘版) 设计》的影响因子在 聿市优秀期刊奖。本 本刊主要栏目: 失效分析、优化设计	法是中国机械工程学会机 统计源期刊、中国科学引 定中文重要期刊,国内列 、"中国科技期刊精品数 "、"中国学术期刊综合 E同类科技期刊中名列前刻 同为月刊,每月20日出制 设计领域综述(含动态、 、并行设计、疲劳设计、	机械设计分会会刊、中文标 文数据库(CSCD)来源 小公开发行。本刊已被"叶 数据库"、"中国期刊网" 行评价数据库"等全文域录 家,并多次荣获天津市一 5, A4开本,每期传递信, 方针政策等);专题论文(反求工程、价值工程、		(这) (1)	Catheran Handware 化 秀 期 刊 奖
学、摩擦学、结构、 立用中的实例分析与 近 国内总发行:3 国外5岁行:4	传动、零部件、机电一体 经验)。 非 津市邮政报刊发行局 国国际图书贸易总公司	本化等);现代装备制造技 邮发代号;6-59 邮发代号;M7315	米与实例分析(含麦题论	:文中各种设计技术,在实际	х+++лосталяниян 、人口刊祭

(C)1994-2021 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

Numerical simulation and experimental study of residual stress in S355J2W+N tangentially tube-plate T-joint *WEI Wei*^{1,3}, *LI Yu-jiang*², *SUN Yang*^{1,3}, *YANG Xin-hua*^{1,3}

(1.Dalian Jiaotong University, Dalian 116028, Liaoning pro., China; 2.CRRC of TANGSHAN Co., Ltd., Tangshan 063000, Hebei pro., China; 3.Liaoning Key Laboratory of Welding and Reliability of Rail Transportation Equipment, Dalian Jiaotong University, Dalian 116028, Liaoning pro., China) P30–34

Abstract: The tube and plate T-joint was one of the most common used forms of joints in the bogie frame of a rail vehicle. Various types of suspension brackets were connected to the cross beam through the joint form. The welding quality of the head directly affected the stability and load bearing of the bogie ability. In this paper, the 355 low alloy steel was used as test material. Using SYSWELD finite element software and combined with the thermo-mechanical coupling characteristics of multilayer welding, the residual stress of tangential welding of the T-joint on the tube and plate was coupled and calculated. X-ray diffraction method was used. The post-welding residual stress of the tube and plate tangent multilayer welding T-joint was tested. The comparative analysis simulation and experimental results showed that the results were in good agreement with each other and provided a method basis for achieving process optimization design. For transverse residual stresses, the maximum residual stress at the center of the welding and a compressive stress on the side of the tube facing away from the welding, for longitudinal residual stress, the maximum residual stress also appeared near the welding toe, with a maximum at the center of the welding, and then gradually decreased along the direction perpendicular to the welding.

Key words: tangentially tube-plate T-joint, residual stress, multi-layer welding, finite element method

Study on P-S-N fatigue life of welded joint of A6005A-T6 aluminum alloy

WANG Yuan-fei¹, SUN Hai-rong¹, ZHU Zhong-yin², YU Jin-peng^{1,3}

(1.Technology Research Center, CRRC Tangshan Co., Ltd., Tangshan 063035, Hebei pro., China; 2.Key Laboratory of Advanced Technologies of Materials in Ministry of Education, Southwest Jiaotong University, Chengdu 610031 Sichuan pro., China) P41-46

Abstract: According to the statistical analysis method of fatigue test of aluminum alloy materials, the P-S-N fatigue curves of A6005A-T6 aluminum alloy welded joints were obtained for both smoothness samples and samples with height. Based on this curve, the reliability of experimental data under different stress levels were analyzed, the pros and cons between the S-N curve and the P-S-N curve were discussed. The results of the study showed that if the design and lifetime estimation were performed with a high-survival, high-confidence P-S-N curve, the results would be more conducive to safety.

Key words: A6005A-T6 aluminum alloy, welded joint, S-N curve, P-S-N curve

Research on simulation welding experiment (training) platform based on virtual reality

SONG Jin-hu

(Shandong Transport Vocational College, Weifang 261206, Shangdong pro., China) P72-74

Abstract: A set of simulation welding experiment (training) platform was designed, the hardware included welding platform, control host, simulation welding torch, video glasses and so on. The software included teaching module, simulation training module and training result evaluation module, which enabled the trainees to carry out efficient training of welding skills in the "virtual reality" environment of high simulation. The platform provided a variety of different workpiece form selection, so that the trainers could practice different welding forms and welding positions, the system had simple operation and a full range of vision, and was a set of efficient and multifunctional simulation welding experiment (training) platform for the school and some training institutions.

Key words: virtual reality, simulation welding, experiment (training) platform, research